Perspectives in Pharmacology Nonhuman Primates: Translational Models for Predicting Antipsychotic-Induced Movement Disorders
نویسندگان
چکیده
Repeated haloperidol treatment administered to nonhuman primates (NHPs) over several months or even years leads to the gradual appearance of drug-induced dystonic reactions in the orofacial region (mouth opening, tongue protrusion or retraction, bar biting) and in the whole body (writhing of the limbs and trunk, bar grasping). The propensity of antipsychotics to induce dystonia in NHPs is not correlated with their propensity to induce catalepsy in rodents, suggesting that the two types of effects are dissociated and may represent distinct aspects of the extrapyramidal symptoms induced by antipsychotics. In view of the clear homology to clinically observed phenomena, antipsychotic-induced dystonias in antipsychotic-primed NHPs would appear to possess a high degree of translational validity. These NHP phenomena could therefore serve as a useful model for predicting the occurrence of similar abnormal movements with novel substances developed for the treatment of schizophrenia or other psychotic disorders. Moreover, the NHP dystonia model could possibly serve as a biomarker for substances that will eventually cause tardive dyskinesia in patients.
منابع مشابه
Nonhuman primates: translational models for predicting antipsychotic-induced movement disorders.
Repeated haloperidol treatment administered to nonhuman primates (NHPs) over several months or even years leads to the gradual appearance of drug-induced dystonic reactions in the orofacial region (mouth opening, tongue protrusion or retraction, bar biting) and in the whole body (writhing of the limbs and trunk, bar grasping). The propensity of antipsychotics to induce dystonia in NHPs is not c...
متن کاملModeling tuberculosis in nonhuman primates.
Nonhuman primates have emerged as an excellent model of human tuberculosis, in large part because they recapitulate the full spectrum of infection outcome and pathology seen in humans. Several variables inherent to the nonhuman primate models of tuberculosis are discussed in this review, including the monkey species, Mycobacterium tuberculosis strains, and routes of infection, all of which can ...
متن کاملComparative Perspectives on Oxytocin and Vasopressin Receptor Research in Rodents and Primates: Translational Implications.
In the last several decades, sophisticated experimental techniques have been used to determine the neurobiology of the oxytocin and vasopressin systems in rodents. Using a suite of methodologies, including electrophysiology, site-specific selective pharmacology, receptor autoradiography, in vivo microdialysis, and genetic and optogenetic manipulations, we have gained unprecedented knowledge abo...
متن کاملTranslational Pharmacodynamics of Calcitonin Gene-Related Peptide Monoclonal Antibody LY2951742 in a Capsaicin-Induced Dermal Blood Flow Model.
LY2951742, a monoclonal antibody targeting calcitonin gene-related peptide (CGRP), is being developed for migraine prevention and osteoarthritis pain. To support the clinical development of LY2951742, capsaicin-induced dermal blood flow (DBF) was used as a target engagement biomarker to assess CGRP activity in nonhuman primates and healthy volunteers. Inhibition of capsaicin-induced DBF in nonh...
متن کاملNonhuman Primate Induced Pluripotent Stem Cells in Regenerative Medicine
Among the various species from which induced pluripotent stem cells have been derived, nonhuman primates (NHPs) have a unique role as preclinical models. Their relatedness to humans and similar physiology, including central nervous system, make them ideal for translational studies. We review here the progress made in deriving and characterizing iPS cell lines from different NHP species. We focu...
متن کامل